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Diffusion-limited reaction in the presence ofn traps
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We solve the problem of a one-dimensional array ofn imperfect traps. These traps are physically represented
by small regions of space~in the one-dimensional version we discuss here these traps are represented by small
sections of thex axis! with a smaller diffusion constant than that outside them. Small physical particles of one
kind diffuse outside and through these small sections. In this work we investigate the changes of the particles
density incurred by the presence of these traps. We also check how this density behaves when the density of
traps becomes very large.
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I. INTRODUCTION

The problem of diffusion in the presence of traps has b
studied by many authors~see, for example,@1,2,5–8#!. These
studies concern the effect of one, a few, or an infinite num
of traps arranged along the whole spatial space. One
however, imagine materials with ahigh densityof traps~such
as a highly doped semiconductors, or a dense system
plasma traps! @9#. Moreover, models for which the range o
trapping is infinite, such as a classical analog of the Kron
Penney model@10,11#, may not be physically realistic. In
principle, one should study models for which the extent
the region of trapping is bounded. In this paper, I use
transfer matrix method@10,12#, in analogy to the quantum
case@10–12#, to study the diffusion of a flow of particles in
a material with a large number of traps in a bounded reg
This method is well adapted to a system of~imperfect! traps
for which the effect of trapping is determined by bounda
conditions@5#.

Since the identical particles diffusing through then traps
system@6–8# are not exposed to any external force the eq
tion that seems most appropriate to describe their den
state is the homogenous diffusion equation@4#. This equation
is taken to hold not only outside then traps, but also in the
small sections representing the traps. The diffusion cons
of the traps denoted here byDi ~assumed to be all identica!
must be smaller than the one outside them denoted byDe .
Since each trap has some small width it has also two side
front side through which the particles enter into it, and
back side out of which the particles leave~if they are not
absorbed inside!. The imperfect nature of then traps must be
given by the appropriate boundary conditions, and since e
trap has two sides we have 2n boundary conditions.

In @2#, a similar system of lattice sites are traversed b
random walker~at the end of@2# a one-dimensional random
walk was numerically discussed! in the presence of a trap
The formalism used in@2# refers to the time variable as con
tinuous @3#, and to the space variable as discrete, and
cusses how the presence of a trap influences the known p
abilities of the random walker. In the work reported here
diffusion of the particles outside and inside the traps is d
cussed by using the homogenous diffusion equation with
appropriate boundary conditions at the traps, and we ch
both theoretically and numerically how the presence of
1063-651X/2001/64~2!/026108~10!/$20.00 64 0261
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traps influences the density of the particles. Since our
malism uses the diffusion equation the space variable as
as the time variable are both continuous.

In Sec. II we show by using the continuity of both th
function representing the particle density and its first sp
derivative at the 2n trap boundaries that we obtain a matr
equation of the formxn5Tx0, whereT is a transfer matrix
@10–12# that is composed of a product ofn two-dimensional
matrices, andxn is a two-dimensional vector that denotes t
imperfect and ideal trap components of the density funct
of the diffusing particles at the right hand side of the den
system.x0 is the corresponding vector that denotes the sa
components at the left hand side of this system. We sh
that when the number of traps, arranged along the finite s
tion alloted for them, becomes very large the particle den
at the end of then trap system is the same as the density
the beginning of this system. That is, the survival probabi
of these particles tends to unity in the limit, and in spite
very large number of traps. We have corroborated the a
lytical results obtained from the transfer matrix method
using directly the 4n34n matrix for the solution of the rel-
evant system of equations. We show by the last method
when the total width of the traps and the total interval amo
them grow the survival probability of the particles passi
through the dense system tends to unity. The same resu
obtained also if we apply the constraint of a fixed total leng
of the system and increase the total interval among the t
~thereby decreasing the total width of them!.

II. THE TRANSFER MATRIX METHOD FOR THE
IMPERFECT TRAP DIFFUSION-LIMITED REACTION

The physical problem we want to solve is the diffusio
limited reaction in the presence ofn traps. We discuss her
the one-dimensional version of this problem. That is, in
finite section of thex axis we have an array ofn traps ar-
ranged in an ordered manner. These traps are assumed
static and the physical particles diffuse between and thro
them. We consider each trap to have a finite width throu
which the particles diffuse. We denote the total width of
then traps bya, so that the width of each one isa/n. We also
denote the total width of all the separating intervals betwe
the traps byb. It is obvious that the number of interval
between the traps isn21, but assuming that the first tra
©2001 The American Physical Society08-1
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D. BAR PHYSICAL REVIEW E 64 026108
begins at the pointx5b/n we obtain that the number of th
separating intervals between the pointx50 and thenth trap
is n, so the width of each such interval isb/n. Thus, we see
that the entire section in which then traps are situated has
finite length of (a1b). We discuss here the imperfect tra
version of this trapping problem in which the particles c
liding with these traps are not instantaneously annihilate

The appropriate one-dimensional initial and bound
value problem is the following:

r t5Drxx , t.0, 0,x<~a1b!,

r~x,0!5r01 f ~x!, 0,x<~a1b!, ~1!

r~xi ,t !5
1

k

dr~x,t !

dx U
x5xi

, t.0, 1< i<2n,

wherer(x,t) is the density of the diffusing particles,r t and
rxx are the first partial derivative with respect to time and
second partial derivative with respect tox respectively. The
first equation is the homogenous one-dimensional diffus
equation andD is the diffusion constant. The second equ
tion is the initial condition that we assume to depend ox
throughf (x), and also on a constant term denoted byr0. The
third equation is the boundary value condition at the place
the i th trap and implies that we have here an imperfect tr
This third equation must be satisfied at all the places of
the n traps, and since each trap has two faces we have a
ally 2n boundary conditions. According to the convention
diffusion theory@4# the problem~1! can be reduced to th
following two problems

r t5Drxx , t.0, 0,x<~a1b!,

r~x,0!5 f ~x!, 0,x<~a1b!, ~2!

r~xi ,t !50, t.0, 1< i<2n.

r t5Drxx , t.0, 0,x<~a1b!,

r~x,0!5r0 0,x<~a1b!, ~3!

r~xi ,t !5
1

k

dr~x,t !

dx U
x5xi

, t.0, 1< i<2n.

The problem associated with the set~2! represents the
diffusion-limited reaction in the presence ofn ideal traps as
can be seen from the third equation of the set~2!, and the
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problem associated with the set~3! represents the diffusion
limited reaction in the presence ofn imperfect traps as can b
seen from the third equation of the set~3!. As seen from the
sets~2! and~3! the original imperfect trap problem from th
set ~1! has been decomposed into two problems, one
which is the ideal trap problem. The solution of the gene
problem from the set~1! is @4#

r~x,t !5Ar1~x,t !1Br2~x,t !, ~4!

wherer1(x,t) is the solution of the ideal trap problem rep
resented by the set~2!, and r2(x,t) is the solution of the
imperfect trap problem from the set~3!. The r1(x,t), found
from the separation of variables method@4#, that satisfies the
boundary and initial value conditions of the set~2! @for, as is
necessary to satisfy the first and third conditions of the
~2!, f (x)5sin(px/xi)] is

r1~x,t !5sinS px

xi
De2(tDp2/xi

2). ~5!

Ther2(x,t) that satisfies the initial and boundary conditio
of the set~3! is given by@5#

r2~x,t !5r0FerfS x

2ADt
D 1exp~k2Dt1kx!

3erfcS kADt1
x

2ADt
D G . ~6!

The erf is the error function defined as erf(x)
5(2/Ap)*0

xe2u2
du, and the erfc is the complementary err

function defined as erfc(x)512erf(x)5(2/Ap)*x
`e2u2

du.
Now, since then traps are imperfect and have a finite wid
a/n the particles arriving at their places diffuse through the
in a finite time. Thus, these particles, while inside these tra
must satisfies a similar diffusion equation as that satis
outside them. The diffusion constantDi inside the traps mus
be smaller from the oneDe outside them. Thus, the densit
inside the traps is given by Eq.~4! except for a different
diffusion constant. Also, we assume that the densityr(x,t)
from Eq. ~4! and its rate of change with respect tox are
continuous along the section (a1b). That is, we can equate
at all the 2n points~where all then traps begin and end!, the
r(x,t) and dr(x,t)/dx outside each trap to ther(x,t) and
dr(x,t)/dx inside it. This is the basis for the transfer matr
method used here. We begin by performing these comp
sons at the two pointsb/n and (a1b)/n, where the first trap
begins and ends, and obtain the following four equations
Ar0FerfS b

2nADet
D 1expS k2Det1

kb

n D erfcS kADet1
b

2nADet
D G

5Cr0FerfS b

2nADit
D 1expS k2Dit1

kb

n D erfcS kADit1
b

2nADit
D G , ~7!
8-2
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Ar0k expS k2Det1
kb

n DerfcS kADet1
b

2nADet
D 1B

np

b
expF2S np

b D 2

tDeG
5Cr0k expS k2Dit1

kb

n DerfcS kADit1
b

2nADit
D 1D

np

b
expF2S np

b D 2

tDi G , ~8!

Cr0FerfS ~a1b!

2nADit
D 1expS k2Dit1

k~a1b!

n DerfcS kADit1
~a1b!

2nADit
D G

5Er0FerfS ~a1b!

2nADet
D 1expS k2Det1

k~a1b!

n DerfcS kADet1
~a1b!

2nADet
D G , ~9!

Cr0k expS k2Dit1
k~a1b!

n DerfcS kADit1
~a1b!

2nADit
D 1D

np

~a1b!
expF2S np

~a1b! D
2

tDi G
5Er0k expS k2Det1

k~a1b!

n DerfcS kADet1
~a1b!

2nADet
D 1F

np

~a1b!
expF2S np

~a1b! D
2

tDeG . ~10!

Solving Eqs.~7!–~8! for the coefficientsC andD in terms ofA andB we obtain

S C

D D 53
aS De ,

b

n
,t D

aS Di ,
b

n
,t D 0

jS De ,
b

n
,t D

hS Di ,
b

n
,t D 2

aS De ,
b

n
,t D jS Di ,

b

n
,t D

aS Di ,
b

n
,t DhS Di ,

b

n
,t D

hS De ,
b

n
,t D

hS Di ,
b

n
,t D 4 S A

BD , ~11!

wherea, j, andh are given by~we write these expression forDe andx5b/n)

aS De ,
b

n
,t D5erfS b

2nADet
D 1expFk2Det1

kb

n GerfcFkADet1
b

2nADet
G , ~12!

jS De ,
b

n
,t D5k expFk2Det1

kb

n GerfcS kADet1
b

2nADet
D , ~13!

hS De ,
b

n
,t D52

np

b
e2(np/b)2Det. ~14!

Then we find the coefficients of the density function between the first and second trap as functions of the coefficien
density function inside the first trap at the pointx5(a1b)/n. This dependence is given by Eqs.~9! and~10! from which we
obtain

S E

F D 5F a~Di ,a1b/n,t !

a~De ,a1b/n,t !
0

j~Di ,a1b/n,t !

h~De ,a1b/n,t !
2

a@Di ,~a1b!/n,t#j@De ,~a1b!/n,t#

a@De ,~a1b!/n,t#h@De ,~a1b!/n,t#

h@Di ,~a1b!/n,t#

h@De ,~a1b!/n,t#

G S C

D D . ~15!
026108-3
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D. BAR PHYSICAL REVIEW E 64 026108
Substituting in the last equation for (D
C) from Eq. ~11! we

obtain

S E

F D 5FT11 T12

T21 T22
G S A

BD . ~16!

T11, T12, T21, andT22 are given by the following expres
sions

T115

aS De ,
b

n
,t Da@Di ,~a1b!/n,t#

aS Di ,
b

n
,t Da@De ,~a1b!/n,t#

, ~17!

T1250, ~18!

T215r0H h@Di ,~a1b!/n,t#

hS De ,
~a1b!

n
,t D F j~De ,b/n,t !

h~Di ,b/n,t !

2
a~De ,b/n,t !j~Di ,b/n,t !

a~Di ,b/n,t !h~Di ,b/n,t !G J
1

a~De ,b/n,t !

aS Di ,
b

n
,t D H j@Di ,~a1b!/n,t#

h@De ,~a1b!/n,t#

2
a@Di ,~a1b!/n,t#j@De ,~a1b!/n,t#

a@De ,~a1b!/n,t#h@De ,~a1b!/n,t#J , ~19!

T225
h@De ,b/n,t#h@Di ,~a1b!/n,t#

h@Di ,b/n,t#h@De ,~a1b!/n,t#
. ~20!

Equation~16! expresses the coefficients of the density fun
tion at the right hand side of the first trap as functions of
coefficients of the density function at the left hand side
this trap. We can repeat the same procedure for all the o
traps and obtain the following equation that expresses
coefficients of the density function at the right hand side
the n traps array as functions of the coefficients of the d
sity function at the left hand side of the first trap~since these
matrices differ from one another only by the values ofx we
write them in the following equation as functions ofx only!

S A2n11

B2n11
D 5T~a1b!TF ~n21!~a1b!

n G
3TF ~n22!~a1b!

n G¯ TF2~a1b!

n G
3TS a1b

n D S A1

B1
D . ~21!

EachT from the last equation is a 232 matrix that is the
same as Eq.~16! except for the differnt values ofx. We can
see from Eqs.~11!–~21! that in the absence of traps whe
Di5De we have for eachT from Eq. ~21! T115T2251,
02610
-
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T125T2150. That is, each one of thesen matrices become
the two-dimensional unity matrix, so that from Eq~21! we
obtain the expected result

S A2n11

B2n11
D 5S A1

B1
D , Di5De. ~22!

The equality from Eq.~22! of the two components of the
particles density at the pointx5a1b to those at the point
x5b/n means that, actually, we haveb50. That is, when
there are no traps there are also no intervals between th
and the whole section along thex axis has only one diffusion
constantDe or Di . Thus, the densities at the two ends of th
section are equal.

Now, we discuss the limit of very largen. In this case
since the total sectiona1b, along which all this dense arra
of traps are arranged, is finite, the width of each such t
that is a/n, and the interval between each two neighbori
traps that isb/n become both very small. Thus, as can
seen from Eqs.~12!–~14!, we have in this case

lim
n→`

aS De ,
~d21!a1db

n
,t D5 lim

n→`

aS De ,
d~a1b!

n
,t D ,

lim
n→`

aS Di ,
~d21!a1db

n
,t D5 lim

n→`

aS Di ,
d~a1b!

n
,t D ,

lim
n→`

jS De ,
~d21!a1db

n
,t D5 lim

n→`

jS De ,
d~a1b!

n
,t D ,

lim
n→`

jS Di ,
~d21!a1db

n
,t D5 lim

n→`

jS Di ,
d~a1b!

n
,t D ,

lim
n→`

hS De ,
~d21!a1db

n
,t D5 lim

n→`

hS De ,
d~a1b!

n
,t D ,

lim
n→`

hS Di ,
~d21!a1db

n
,t D5 lim

n→`

hS Di ,
d~a1b!

n
,t D ,

~23!

lim
n→`

aS De ,
~n2c!a1@n2~c21!#b

n
,t D

5 lim
n→`

aS De ,
@n2~c21!#~a1b!

n
,t D ,

lim
n→`

aS Di ,
~n2c!a1@n2~c21!#b

n
,t D

5 lim
n→`

aS Di ,
@n2~c21!#~a1b!

n
,t D ,
8-4
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lim
n→`

jS De ,
~n2c!a1@n2~c21!#b

n
,t D

5 lim
n→`

jS De ,
@n2~c21!#~a1b!

n
,t D ,

lim
n→`

jS Di ,
~n2c!a1@n2~c21!#b

n
,t D

5 lim
n→`

jS Di ,
@n2~c21!#~a1b!

n
,t D ,

lim
n→`

hS De ,
~n2c!a1@n2~c21!#b

n
,t D

5 lim
n→`

hS De ,
@n2~c21!#~a1b!

n
,t D ,
of
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t t
ric

1

e
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lim
n→`

hS Di ,
~n2c!a1@n2~c21!#b

n
,t D

5 lim
n→`

hS Di ,
@n2~c21!#~a1b!

n
,t D ,

whered and c are positive integers~for example,d receive
the value of 1 for the first trap andc receives this value for
the last trap!. We must note that the first six equations of t
set ~23! are applied to the matrices that represent the tr
that are close to the left hand side of then traps system nea
the pointx5b/n. The last six equations of the set~23! are
applied to the matrices that represent the traps that are c
to the right hand side of then traps system near the pointx
5a1b. Using Eqs.~16!–~20! and the first six equations o
the set~23! we can see that we have for each two dime
sional matrix that represents a trap close to the poinx
5b/n the following limits:
lim
n→`

T1151, ~24!

lim
n→`

T2150, ~25!

lim
n→`

T225 lim
n→`

e2(np)2t(De2Di )$(2adb12da22a2)/[d(a1b)] 2[(d21)a1db] 2} 50. ~26!
mi-

to
.

he

t the
int
The last equation is obtained by using the inequalityDe
.Di . Equation~25! is obtained by a repeated application
l’Hôpital theorem@17#. That is, in the limit ofn→` each of
the two terms of Eq.~19! is a product of the kind (̀ •0), so
we use the l’Hoˆpital theorem@17# that yields a result of the
same kind (̀ •0). Thus, we have to apply repeatedly t
same theorem until we obtain a finite result that turns ou
be zero. We see, therefore, that each one of these mat
becomes, in the limit of very largen, a constant two-
dimensional matrix the first column of it is composed of
and 0, and the second column is composed of zeroes,

lim
n→`

Tn5S 1 0

0 0D . ~27!

Also the product of any number of two dimensional matric
of the form~27! yields back again a matrix of the same form

As for the matrices that represent traps close to the p
x5a1b we can see from the seventh and eighth equati
of the set~23! that the elementT11 of each matrix of this
kind satisfies the same limit relation of Eq.~24!. Figure 1
shows a three-dimensional graph of the elementT11 as a
o
es

s

nt
s

function of the total widtha of all the trapsa, and the num-
ber n of them. The range ofa is 1<a<50, and that ofn is
1<n<800,b is a/2, t52, and the other parametersDe , Di ,
andk are 0.5, 0.1, and 1 respectively.@These values illustrate
the method and give results that should be qualitatively si
lar for a wide class of applications, for example, 0.5 cm2/sec
is the order of magnitude of the diffusion constantD at room
temperature and atmospheric pressure~p. 337 in @13#!.# It
can be seen from this figure that for smaller values ofn the
elementT11 receives values in the range 0.4<T11<2, and
the rate of change ofT11 for these smalln’s is large com-
pared to this rate for large values ofn. As n grows the value
of T11 tends to unity. But as seen from Fig. 1 the approach
unity is faster for small values ofa than for the larger values
The reason for this is that when the total widtha of the n
traps is small, whereas,n itself is large then thesen traps are
densely arrayed along the finite sectiona1b. And as we
have seen@see Eq.~24!# when we have a dense array~large
density! of traps the elementT11 tends to unity. Whena
becomes larger then traps are not densely arrayed along t
finite section a1b, and correspondingly the elementT11
does not receives the exact value of 1. It can be seen tha
elementT22 of the matrices that represent traps near the po
x5a1b have the following limit
8-5
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lim
n→`

T225 lim
n→`

expF2~n2p!2t~De2Di !
~a212b2!~122c!12ab~11c!12n~a21b22cb21ab!

$@n2~c21!#~a1b!%2$~n2c!a1@n2~c21!#b%2 G51.
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It can be seen also that in the limit ofn→` the elementT21
of each matrix of the matrices that represent traps clos
the pointx5a1b is zero as for the matrices that represe
traps close to the pointx5b/n @see Eq.~25!#. This time we
obtain the value of zero in the limit ofn→` without having
to use the l’Hoˆpital theorem as in the former case. That is,
this limit of n→` each of the matrices that represent tra
close to the pointx5a1b becomes the two-dimensiona
unity matrix. Now, taking into account that the product
any number of two-dimensional unity matrices by a mat
of the form ~27! results in a matrix of the same form as E
~27!, we can write the limit~for very largen) of Eq. ~21!
using Eqs.~23!–~27! as

lim
n→`

S A2n11

B2n11
D 5S 1 0

0 0D S A1

B1
D . ~28!

From the last equation we conclude that the imperfect t
component of the density remains at the pointx5a1b ~the
right hand side of then trap system!, at the same value it ha
at the pointx5b/n ~the left hand side of then trap system!.
That is, for this component$which is actually the only com-
ponent of the density@see the original problem~1!#% the pres-
ence of a very large number of traps is the same as if
even a single trap is present. As for the ideal trap compon
we see from Eq.~28! that it vanishes at the pointx5a1b.

In all the numerical computations done so far we ha
assigned to the coefficientk of the boundary value condition
of the imperfect traps problem the value of 1@see the third
equations of the sets~1! and~3!#. We can see from Eqs.~12!
and~17! that whenk→` anda, b, n, andt have finite values
then the elementT11 satisfiesuT11u,1. This is because the
elementT11 @see Eq.~17!# of each matrixT from Eq. ~21! is
composed of products and divisions by the expressiona
from Eq.~12!. The second term ofa that involves the erfc is
zero, in the limit ofk→`, by application of the l’Hoˆpital
theorem. We remain in Eq.~17! with only products and di-
visions of the erf functions as seen from the following equ
tion that is written for the first trap

lim
k→`

T115

erfS b

2nADet
D erfS a1b

2nADit
D

FerfS b

2nADit
D erfS a1b

2nADet
D G . ~29!

For finitea, b, n, andt eachT11 from the last equation result
in an outcome that is between 0 and 1, so that thenth order
product of theseT11’s in Eq. ~21! results in a small number i
n is large. But we can see that whena and b become very
large ~for finite n and t) then the erf function tends to unit
in this case@see Eq.~12!#, and each elementT11 of each
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matrix T from Eq. ~21! tends to 1, so that thenth order
product of Eq.~21! results in 1. That is, according to ou
discussion so far, the density at the pointx5a1b at the right
hand side of then trap system is the same as that at the l
hand side of this system at the pointx5b/n. We can show
that we obtain the same result also whenn→` or t→` or
when both limits are satisfied. Figure 2 shows a thr
dimensional graph ofT11 in the limit of k→`, that is, a
graph of theT11 from Eq. ~29! as a function ofn anda. The
range ofn is 1<n<150, and that ofa is 1<a<200. The
values of the other parameters are:De50.5, Di50.1, and
t52. It can be seen from the graph that the surface ofT11

tends to unity for largen and smalla, because in such a cas
the large number of traps are densely arrayed along the s
sectiona1b. It can also be seen that whena begins to grow
the value ofT11 exceeds 1 even for largen. Whenn is small
the surface ofT11 tends to the value of unity asa becomes
large as can be seen from Fig. 2. As seen from Eq.~29! we
obtain the same situation if we replacen by t. That is, when
t→` we obtain a value of unity for theT11 of Eq. ~29!, and
with it a value of unity also for the infinite product from Eq
~21!.

We must note that whenk→`, in such a case the imper
fect traps become ideal@see the third equations of the sets~1!
and~3!#, the situation obtained is still different from the ide
traps component of the density function as given by the
~2! and Eq.~5!. This is because the ideal trap problem fro
the set~2! has an initial condition that is entirely differen
from the initial condition of the set~3!. Thus, as seen from
the set~2!, we obtain a result of zero for the ideal trap com
ponent of the density at the pointx5a1b, whereas we may
obtain, as we see in Fig. 2, a result of unity for the ideal tr
situation obtained from the imperfect problem@see the sets
~1! and ~3!# in the limit of infinite k.

All the results obtained so far by the transfer mat
method may be obtained also by considering the equiva
4n34n matrix method that deals with only one large matr
instead of then two-dimensional matrices that compose t
transfer matrix. Using this method we have, numerica
computed and plotted the ratio~denoted byV) of the imper-
fect trap function coefficient at the pointx5a1b ~at the
right hand side of then trap system! to that at the pointx
5b/n ~at the left hand side of this system! as a function of
the total widtha of the n trap system. Figure 3 shows th
graphs ofV for different values of the timet, as functions of
the total widtha of the n traps where we have assigned ton
the value ofn550. The range ofa is 46<a<300, and the
seven curves shown are for the following values of the tim
t51,6,11,16,21,26,31. The correct chronological order of
curves shown in the figure is downward. That is, the up
curves in Fig. 2 are for the smallt ’s, and the lower curves are
for the large ones. Note that ast grows the corresponding
8-6
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FIG. 1. The surfaceT11 as a function of the
number of trapsn and the total widtha.
f

s
h
e
r

of

lu

ra

we

the
the

tion

o

al-
ter
sys-
hat
curves tend to give the value ofV50.62. Whena becomes
largeV tends to unity for all values oft as can be seen from
Fig. 3. Figure 4 shows that whena grows V tends to unity
also for all values of the number of trapsn. In Fig. 4 we see
nine graphs ofV as a function ofa for nine different values
of n. The range ofa is 46<a<200, andn has the values o
2, 8, 14, 20, 26, 32, 38, 44, and 50.t has the value equal to
2, and the other parametersDe , Di , k has the same values a
in Fig. 3. It is seen from Fig. 4 that all the curves tend to t
value of unity whena becomes large. The curves fit th
different given values ofn from above so that the uppe
curves correspond to the smaller values ofn, and the lower
ones correspond to the larger values. For small valuesn
the graph ofV begins from a value close to 1, and asn grows
the initial point of the corresponding curve tends to the va
V50.8 and continues from there to unity asa grows. The
approach ofV to 1 is faster whenn is small than whenn is
large as can be seen from the figure. If we measure the
02610
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of the imperfect trap coefficient of the densityinsidethe last
trap to that at the left hand side of the trap system then
find similar results to those we found for the ratioV of the
imperfect trap coefficient of the densityoutsideand to the
right of the last trap to this coefficient at the pointx5b/n.
Measuring the ratios of the ideal trap coefficient outside
traps or inside them to the imperfect trap coefficient at
point x5b/n we find a very small result for alln and alla.
This is expected since this component of the density func
is absorbed completely at the sides of the traps. Att50 we
find that the value ofV is unity for all values ofn anda. We
have obtained this result fork51, De50.5, Di50.1, and
b5a/2. That is, at the initial time the densities at the tw
extreme sides of the trap system are equal. Whent departs
from zero this coefficient becomes smaller for the same v
ues ofn anda. That is, as time progresses the density af
the n trap system becomes smaller than that before this
tem as expected from a physical point of view. We note t
FIG. 2. The surfaceT11 as a function of the
number of trapsn and the total widtha.
8-7



D. BAR PHYSICAL REVIEW E 64 026108
FIG. 3. The ratiosVn as functions of the total
width a for seven different values of the timet.
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the equality ofA2n115A0 for very largea obtained from
Figs. 3 and 4 is not the same as the identical equality~22!
obtained forb50 @see the discussion after Eq.~22!#. The
reason is that a very large value ofa in Figs. 3 and 4 does no
entails an existence of only one diffusion constant along
entire sectiona1b as we have obtained from Eq.~22!. Note
that in these figures we have all the timeb5a/2, so whena
becomes very largeb also does so, and we have still the tw
diffusion constantsDe andDi along the sectiona1b. Thus,
it is entirely different from theDe5Di case of Eq~22!.

We must note that in all the analytical and numerical d
cussion so far the finite length of the system, we denote i
L5a1b, is not kept constant as, for example, in Figs. 3 a
4 that shows the ratiosV’s as functions ofa, whereb5a/2,
so that whena increases,b andL also do so. That is, as turn
out from these figures the ratiosV’s tend to 1 when the tota
width a and the total lengthL grow. If we impose the con-
02610
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straint of a strictly constantL, such that whena increasesb
must decrease in order to remain with a constantL, then we
can express the total widtha and total intervalb in terms of
the total lengthL and another parameterc that is a positive
real number defined asc5b/a. That is,a andb can be writ-
ten as

a5
L

11c
b5

Lc

11c
. ~30!

From the last two relations we see that asc increasesa de-
creases to the limit of zero, andb grows to the limit ofL. In
this case of a fixed total lengthL the ratioV depends onc
and n in such a manner that for smalln, V exceeds unity
already at small values ofc. As n increasesV tends to the
unity for larger values ofc as can be seen from Fig. 5 tha
FIG. 4. The ratiosVn as functions of the total
width a for nine different values ofn.
8-8
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FIG. 5. The ratioVn for a fixed total length of
the system and for six different values ofn.
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shows the ratioV as a function ofc in the range 1<c<10
for a total system length ofL560, and for six different val-
ues ofn: 20,40,60,80,100,120. The upper curves fit the low
values of n and vice versa. That is, the uppermost cur
corresponds ton520. The second curve from above is f
n540 and so on. Note that asn growsV tends to begin from
the value ofV50.83. If we compare Fig. 5 with Fig. 3
which shows the ratiosV’s for the case in which the tota
lengthL is not fixedwe see that for this case the ratioV tends
to the unity only when both the total widtha and the total
interval b increases~note that in Fig. 3,b5a/2), whereas
when the total lengthL is fixedthe ratioV tends to the unity
only when the total intervalb increases and the total widtha
decreases. Thus, we see that the survival probability of
particles represented by the imperfect trap density tend
unity also for a fixed total length of the system whenn andc
increases.

We note that if the number of trapsn is a power of 2, that
is, n52m, then we can use a property of the transfer ma
mentioned in@12# in connection to the quantum system ofn
potential barriers. First, a pair of traps are combined in
manner of Eqs.~11!–~20! to produce a transfer matrix o
these two traps. Then the same construction is repeate
garding the former transfer matrix as the new element
building block. Continuing in the same manner we obtain
the level m the transfer matrix of 2m identical traps. For
instance, ifm515 thenn5215532 768. That is, at the leve
15 of the construction we build the transfer matrix of 32 7
identical traps. Whenn is not a power of 2 we can use th
following binary representation of 2

n5cm2m1cm212m211•••1c020,

in order to write Eq.~21! as
02610
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S A2n11

B2n11
D 5@T~2m!#cm@T~2m21!#cm21

•••@T~20!#c0S A1

B1
D .

~31!

In summary, we see that the survival probability of the p
ticles represented by the imperfect trap component of
density tends to unity as the number of traps becomes a
large number if@14,15#. This situation in which the diffusing
particles survive in spite of the very large number of tra
surrounding them has been alluded in@16#, and it was argued
there that if the particles survive all these traps then th
must have performed anomalous diffusion.

We note that we have found in the former section a res
of unity for the survival probability of the imperfect tra
component of the density also for very small times in ad
tion to finding it for the case of very small widths of the tra
~when their numbern becomes very large!. This reminds us
of the Zeno effect that is conventionally believed to be
quantum phenomenon@18#, although one of the first author
@19# that discuss this effect argued that it holds not only
the quantum regime, but also in the classical and mac
scopic one, and that it may be the prime factor that stabili
many physical phenomena. This Zeno effect is thought to
a time effect@18#, that is, the large repetitions of some me
surement over a total finite time interval, where the tim
alloted for each separate measurement is correspondi
very small, preserves the initial state of the system. It
been argued@20,21# that this preservation may also be o
tained through the space analog of this effect. That is, w
the repetitions of this very large number of the same inter
tion is performed over space and not over time such that e
interaction is confined in its specific space domain and w
the very large number of these small domains are conta
in a finite region of space. The result we have obtained
this section in which the density is preserved in the limit, a
in spite of the large number of traps, may allude to a sp
8-9
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Zeno type effect that is responsible for the unit survival pro
ability we have obtained in this section. A similar result h
been obtained for the classical concentric billiard for whic
Zeno type effect has been established@22#.

III. CONCLUDING REMARKS

We have discussed the problem of a one-dimensio
diffusion-limited reaction in the presence ofn imperfect
traps. The physical entity we have tried to determine is
densityr(x,t) of the identical particles that diffuse betwee
and through then traps. We have shown that the origin
problem may be decomposed into two secondary ones,
of which is the ideal trap problem, and the other is the i
perfect trap problem. By using the continuities of the dens
function and its first space derivatives at the 2n boundaries
of then traps we have obtained a transfer matrix that enab
us to discuss the dense system analytically. We have sh
that whenn becomes very large the density, after all then
traps are passed through, remains the same as it was a
,
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oe
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left hand side of the first trap before these traps were
versed. That is, the density is preserved along thex axis in
spite of the very large number of traps arrayed along
finite sectiona1b. It appears that this unit value for th
survival probability of the traversing particles may be
manifestation of a space Zeno type effect. These results w
corroborated numerically using the equivalent 4n34n ma-
trix from it we have obtained that when the total widtha and
the total intervalb of then traps increases the survival prob
ability of the passing particles tends to 1. The same re
was obtained also when the total lengtha1b of the dense
system is kept fixed, and the total intervalb increases~in this
case the total widtha decreases!.
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