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Diffusion-limited reaction in the presence ofn traps
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We solve the problem of a one-dimensional array ahperfect traps. These traps are physically represented
by small regions of spadgn the one-dimensional version we discuss here these traps are represented by small
sections of thex axis) with a smaller diffusion constant than that outside them. Small physical particles of one
kind diffuse outside and through these small sections. In this work we investigate the changes of the particles
density incurred by the presence of these traps. We also check how this density behaves when the density of
traps becomes very large.
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[. INTRODUCTION traps influences the density of the particles. Since our for-
malism uses the diffusion equation the space variable as well
The problem of diffusion in the presence of traps has bee®s the time variable are both continuous.
studied by many authoksee, for exampld1,2,5—§). These In Sec. Il we show by using the continuity of both the
studies concern the effect of one, a few, or an infinite numbefunction representing the particle density and its first space
of traps arranged along the whole spatial space. One caflerivative at the & trap boundaries that we obtain a matrix
however, imagine materials withragh densityof traps(such ~ equation of the formx,=Tx,, whereT is a transfer matrix
as a highly doped semiconductors, or a dense system 610—12 thatis composed of a product oftwo-dimensional
plasma traps[9]. Moreover, models for which the range of matrices, and, is a two-dimensional vector that denotes the
trapping is infinite, such as a classical analog of the Kronigimperfect and ideal trap components of the density function
Penney mode[10,11], may not be physically realistic. In of the diffusing particles at the right hand side of the dense
principle, one should study models for which the extent ofsystemx, is the corresponding vector that denotes the same
the region of trapping is bounded. In this paper, | use thecomponents at the left hand side of this system. We show
transfer matrix method10,12, in analogy to the quantum that when the number of traps, arranged along the finite sec-
case[10—12, to study the diffusion of a flow of particles in tion alloted for them, becomes very large the particle density
a material with a large number of traps in a bounded regionat the end of then trap system is the same as the density at
This method is well adapted to a system(imfiperfeci traps  the beginning of this system. That is, the survival probability
for which the effect of trapping is determined by boundaryof these particles tends to unity in the limit, and in spite of
conditions[5]. very large number of traps. We have corroborated the ana-
Since the identical particles diffusing through théraps  Iytical results obtained from the transfer matrix method by
system6—8] are not exposed to any external force the equausing directly the 4 4n matrix for the solution of the rel-
tion that seems most appropriate to describe their densitgvant system of equations. We show by the last method that
state is the homogenous diffusion equafiéh This equation ~when the total width of the traps and the total interval among
is taken to hold not only outside thretraps, but also in the them grow the survival probability of the particles passing
small sections representing the traps. The diffusion constariirough the dense system tends to unity. The same result is
of the traps denoted here ) (assumed to be all identigal obtained also if we apply the constraint of a fixed total length
must be smaller than the one outside them denoteB by  Of the system and increase the total interval among the traps
Since each trap has some small width it has also two sides; @ereby decreasing the total width of them
front side through which the particles enter into it, and a
back side.ou.t of Wh?Ch the particles leavié they are not Il. THE TRANSFER MATRIX METHOD FOR THE
absorbed inside The _|mperfect nature of_t_hetraps must be IMPERFECT TRAP DIEEUSION-LIMITED REACTION
given by the appropriate boundary conditions, and since each
trap has two sides we haver boundary conditions. The physical problem we want to solve is the diffusion-
In [2], a similar system of lattice sites are traversed by dimited reaction in the presence oftraps. We discuss here
random walker(at the end of2] a one-dimensional random the one-dimensional version of this problem. That is, in a
walk was numerically discussgih the presence of a trap. finite section of thex axis we have an array af traps ar-
The formalism used if2] refers to the time variable as con- ranged in an ordered manner. These traps are assumed to be
tinuous[3], and to the space variable as discrete, and disstatic and the physical particles diffuse between and through
cusses how the presence of a trap influences the known protihem. We consider each trap to have a finite width through
abilities of the random walker. In the work reported here thewhich the particles diffuse. We denote the total width of all
diffusion of the particles outside and inside the traps is disthen traps bya, so that the width of each onea¢n. We also
cussed by using the homogenous diffusion equation with thdenote the total width of all the separating intervals between
appropriate boundary conditions at the traps, and we chedke traps byb. It is obvious that the number of intervals
both theoretically and numerically how the presence of thébetween the traps in—1, but assuming that the first trap
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begins at the point=b/n we obtain that the number of the problem associated with the &) represents the diffusion-
separating intervals between the poist 0 and thenth trap  limited reaction in the presence mimperfect traps as can be
is n, so the width of each such intervaltign. Thus, we see seen from the third equation of the 48j. As seen from the
that the entire section in which thretraps are situated has a sets(2) and(3) the original imperfect trap problem from the
finite length of @+ b). We discuss here the imperfect traps set (1) has been decomposed into two problems, one of
version of this trapping problem in which the particles col-which is the ideal trap problem. The solution of the general
liding with these traps are not instantaneously annihilated. problem from the setl) is [4]

The appropriate one-dimensional initial and boundary .
value problem is the following: P(XD)=Apa(X,) +Bpa(x.1), )

wherep;(x,t) is the solution of the ideal trap problem rep-
pi=Dpyx, t>0, 0<x<(a+b), resented by the sdR), and p,(x,t) is the solution of the
imperfect trap problem from the s&). The p;(x,t), found
from the separation of variables methi@d, that satisfies the
boundary and initial value conditions of the $2} [for, as is
necessary to satisfy the first and third conditions of the set

p(X,0)=po+f(x), O0<x=(a+h), (1)

1 dp(x,t =gj I i
(% )= p(Xx,t) >0 1=i=2n (2), f(x)=sin(mx/x)] is
k dx | _
i X 2,2
—ain| = | o= (tD7%/X)
wherep(x,t) is the density of the diffusing particleg, and p1(X,0) sm( i )e ' ®)

pxyx are the first partial derivative with respect to time and the . _— "
second partial derivative with respectxaespectively. The The p,(x,t) that satisfies the initial and boundary conditions

first equation is the homogenous one-dimensionai diffusiorf’ the set(3) is given by[5]
equation and is the diffusion constant. The second equa-

tion is the initial condition that we assume to dependxon )= ; X N KDt 4+ K
throughf(x), and also on a constant term denotegyThe p2(X,1)=po| €r /Dt exp( X)
. S " 2Dt
third equation is the boundary value condition at the place of
theith trap and implies that we have here an imperfect trap. X
This third equation must be satisfied at all the places of all Xerfc| kyDt+ 2061 | (6)

then traps, and since each trap has two faces we have actu-
ally 2n boundary conditions. According to the conventionalThe erf is the error function defined as e
diffusion theory[4] the problem(1) can be reduced to the

_ X a— U2 ;
following two problems (2/\/;)foe du, and the erfc is the complementary error

function defined as erfg=1—erf(x)= (2/\/;)fX e “’du.

pi=Dpyy, t>0, 0<x=(a+tb), Now, since then traps are imperfect and have a finite width
a/n the particles arriving at their places diffuse through them
p(x,00=f(x), O0<x=<(a+tb), (2)  in afinite time. Thus, these particles, while inside these traps,
must satisfies a similar diffusion equation as that satisfied
p(xi,t)=0, t>0, 1si<2n. outside them. The diffusion constat inside the traps must
be smaller from the on®, outside them. Thus, the density
pt=Dpyx, t>0, 0<x=(atb), inside the traps is given by Ed4) except for a different
diffusion constant. Also, we assume that the dengity,t)
p(x,00=py 0<x=(a+b), (®  from Eq. (4) and its rate of change with respect xoare
1 dp(x.0) continuous alo_ng the sectiom{b). That is,_we can equate
p(X; 1) == pL7 . t>0, 1<i=2n. at all the 2h points(where all then traps begin and engdthe
kdx [ p(x,t) anddp(x,t)/dx outside each trap to the(x,t) and

dp(x,t)/dx inside it. This is the basis for the transfer matrix
The problem associated with the @) represents the method used here. We begin by performing these compari-
diffusion-limited reaction in the presence wfideal traps as sons at the two pointis/n and @+ b)/n, where the first trap
can be seen from the third equation of the @t and the begins and ends, and obtain the following four equations:

b

2n/D.t
kyDt+

kb
Apo +ex;(k2Det+F erfc| kyDgt+

b
erf
(Zn VDot

f b + p(kzD t+ kb
er ex ; —
2n\D;t toon
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Apok k’D kb fo| ky/D b " nm)* D
pok ex et+F er et+WD_et + b expg — b tDe
kb nT n\?
—Cpokexp<k Dt+— erfc{ kyDjt+ —— n\/_ +D—ex;{—(F) tDi}, 8
(a+b) k(a+h) )
Cpo| erfl +exp k?D;t+ erfc| kyD +
Po (Zn\/Dit ' 2nyD
(a+b) [{ k(a+h) ) (a+b)
=Ep,| erf +exp k?Dgt+ erfc| kyDgt+ —— 9
Po (Zn\/D_et e n\/— ( )
k(a+b) nw nmw |2
2n. Y )
Cpokexp{k Dit+ ) c(k\/ \/D_) (a+b) [{ @+b) tDI}
k(a+b)) (a+b) n F{ n )2 }
=Epok exp k?Dgt+ erfc| kyDet+ +F expg — | ———| tDg|. 10
Po p( ¢ ¢ 2n\/Det) (a+b) (atb)) 7€ (19
Solving Eqgs.(7)—(8) for the coefficientsC andD in terms of A and B we obtain
a( De,n,t> .
b b
C | Divt A
D/ b b b b B/’ 1
f De!ﬁ!t o De,ﬁ,t g Di!ﬁ!t n De,ﬁ,t
b | b b
7 D,,ﬁ,t a| D, =ty Di,ﬁ,t 7 Di,ﬁ,t
wherea, &, andn are given by(we write these expression f@, andx=b/n)
(D b t) f( b + p[kZD t+k fg ky/Dg + (12)
a ,—,t|=er ex er ,
“'n 2n\/Dt \/Det
b ) F{ kb b
De,—,t|=kexpg k?®Dgt+ — |erfc| kyDot+ , 13
g( e n e n % e 2n\/D_et) ( )
b n

Then we find the coefficients of the density function between the first and second trap as functions of the coefficients of the
density function inside the first trap at the poxit (a+b)/n. This dependence is given by E@9) and(10) from which we
obtain

a(Dj,a+b/n,t)

E a(De,a+b/n,t) C

(F): &(Dy,at+b/nt)  «ofD;,(a+b)/nt]¢De,(a+b)/n,t] #[D;,(a+b)/n,t] (D)
n(De,a+b/n,t)_a[De,(a+b)/n,t]n[De,(aer)/n,t] 7[De,(a+b)/n,t]

0
(15
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Substituting in the last equation foﬁX from Eq. (11) we

obtain

E
E

A

T T
B

T21 T22

RS

(16)

T11, T2, Toq, and Ty, are given by the following expres-

sions

Equation(16) expresses the coefficients of the density func-

a( De, ,t) a[Dj,(a+b)/n,t]

17

O|>s| o

T11=
a( D, 'ﬁ’t) a[Dg,(a+b)/n,t]

T1,=0, (19

7 D;,(a+b)/n,t]
T21:Po (a+b)
APCLN
a(De,b/nt)&(D;,b/n,t)
~ a(D;,b/n,t)n(D; ,b/n,t)
a(Dg,b/n,t)
o2
(44 Di ,—,t
n

a[D;,(a+b)/n,t]&De,(a+b)/n,t]
" a[De,(a+b)/n,t]y[De,(a+b)/n,t]

&(De,bin,t)
7(D;,b/n,t)

&[D;,(a+b)/n,t]
7[De,(a+b)/n,t]

] , (19

B 7[De,b/n,t]y[D;,(a+b)/n,t]
227 p[D; ,bin,t]7[De,(a+b)/n,t]"

(20
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T,,=T,,=0. That is, each one of thesematrices become
the two-dimensional unity matrix, so that from E21) we
obtain the expected result

o)

The equality from Eq(22) of the two components of the
particles density at the point=a+b to those at the point
x=Db/n means that, actually, we hawe=0. That is, when
there are no traps there are also no intervals between them,
and the whole section along tleaxis has only one diffusion
constanD, or D; . Thus, the densities at the two ends of this
section are equal.

Now, we discuss the limit of very large. In this case
since the total sectioa+ b, along which all this dense array
of traps are arranged, is finite, the width of each such trap
that isa/n, and the interval between each two neighboring
traps that isb/n become both very small. Thus, as can be
seen from Eqgs(12)—(14), we have in this case

A
B1

A
2t ) D,=D.. (22)

B2n+1

tion at the right hand side of the first trap as functions of the

coefficients of the density function at the left hand side of
this trap. We can repeat the same procedure for all the other |y, 4,
traps and obtain the following equation that expresses the n_.-

coefficients of the density function at the right hand side of

the n traps array as functions of the coefficients of the den-

sity function at the left hand side of the first tregince these
matrices differ from one another only by the valuescafie

write

Each
same
see f

them in the following equation as functionsobnly)
A n—1)(a+b
( 2n+1)=T(a+b)T ( )( )
B2n+1 n
n—2)(a+b 2(a+b
| (n=2)(@+b)] _[2(a+b)
n n
a+b\ (A o1
e, (1)

T from the last equation is a2 matrix that is the
as Eq16) except for the differnt values of We can
rom Eqgs(11)—(21) that in the absence of traps when

D;=D, we have for eachl from Eq. (21) T1=T,,=1,

_ ( (d—1)a+db ) _ ( d(a+b) )
lim a| Dg,————,t|=1lim «a| Dy, t,

n—oo n n—o n
im a0, SURD 5, 42201
. ( (d=1)a+db ) ) ( d(a+b) )
lim & D, ————,t|=1im £| Dy, t,

n—o n N n
. ( (d=1)a+db ) ) ( d(a+b) )
lim ¢ Dj,————.,t|=1Ilim &| D;, t,

n—o n n—oo n
(De,w,t): lim ,,(DE,MJ),

n N n

i (d—1)a+db ) d(a+b)

lim U(Diyfi): lim n(Di, = ,t),

n—oe n—oo

(23

(n—=c)a+[n—(c—1)]b )

n 1
..

(n—=c)a+[n—(c—1)]b )
n )

lim «

n—o

|
)
|
|

o

=lim «

n—o

o
o

[n—=(c—1)](a+b)
n

lim «
[n—(c—1)](a+b) )
n )

= |lim

n—oe
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(De, (n—c)a+[n—(c—1)]b .t>

lim & .

n—o

lim 7

n—oo

(Di | (n—c)a+[:—(c—1)]b,t)

=lim &

n—oe

g, =lim »

(De, [l’l—(C—i)](a+ b)

n—(c—1)](a+b
) (Di.[ ( )1( ),t),
n—ow n
im §( D. (n—c)at+[n—(c—1)]b ¢ whered andc are positive integergfor example,d receive
oo v n ' the value of 1 for the first trap andreceives this value for

the last trap. We must note that the first six equations of the
set(23) are applied to the matrices that represent the traps

: [n—(c—D](a+b)
:r!'Lnx g( Di. n ar that are close to the left hand side of théraps system near
the pointx=b/n. The last six equations of the sg3) are
(n—c)a+[n—(c—1)]b applied to the matrices that represent the traps that are close
lim 77( De, . t to the right hand side of the traps system near the poixt
n—o

=a+b. Using Egs.(16)—(20) and the first six equations of
the set(23) we can see that we have for each two dimen-

,t), sional matrix that represents a trap close to the paint
=h/n the following limits:

(De- [n—(c—1)](a+b)

=lim 7 =

n—o

I|m T11:1, (24)
n—oo
lim T,,=0, (25
n—oo
lim T,,= lim e~ (nm)?(De—Di){(2adb+2da?~a?)/[d(a+b)]’[(d~1)a+db]?} — (26)

n—oo n—oo

The last equation is obtained by using the inequality  function of the total widtha of all the trapsa, and the num-
>D,. Equation(25) is obtained by a repeated application of bern of them. The range o4 is 1<a<50, and that oh is

I'HG pital theoren{17]. That is, in the limit ofn— each of ~1=n=800,bisa/2, t=2, and the other parameteds, D;,

the two terms of Eq(19) is a product of the kind%-0), so  andkare 0.5,0.1, and 1 respectivelfhese values illustrate
we use the I'Hpital theorem{17] that yields a result of the the methoq and give result_s th'at should be qualitatively simi-
same kind ¢-0). Thus, we have to apply repeatedly the lar for a wide class of applications, for example, 0.5#sec
same theorem until we obtain a finite result that turns out tdS the order of magnitude of the diffusion constanat room

be zero. We see, therefore, that each one of these matrickmperature and atmospheric press(re 337 in[13]).] It
becomes, in the limit of very large, a constant two- can be seen from this figure _that for smaller values ttfie
dimensional matrix the first column of it is composed of 1 €/€MeNtTy, receives values in the range &4,,<2, and

and 0, and the second column is composed of zeroes, the rate of_change of 4, for these smalh’s is large com-
pared to this rate for large values fAs n grows the value

of T4, tends to unity. But as seen from Fig. 1 the approach to
im T :(1 O) 27) unity is faster for s_mall values @fthan for the Iarger values.
"“lo o The reason for this is that when the total widitof the n
traps is small, whereas,itself is large then thesetraps are

) ) . densely arrayed along the finite sectiar-b. And as we
Also the product of any number of two dimensional matricespayve seefisee Eq(24)] when we have a dense arrégrge

of the form(27) yields back again a matrix of the same form. density of traps the elemenT,; tends to unity. Whera

As for the matrices that represent traps close to the pointecomes larger the traps are not densely arrayed along the
x=a+b we can see from the seventh and eighth equationfinite sectiona+b, and correspondingly the elemefft,
of the set(23) that the elemenT ;; of each matrix of this does not receives the exact value of 1. It can be seen that the
kind satisfies the same limit relation of E(4). Figure 1  elementT,, of the matrices that represent traps near the point
shows a three-dimensional graph of the elemépntas a x=a-+b have the following limit

n—oc
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, , ~ (a?+2b?)(1—2c)+2ab(1+c)+2n(a’+b?—cb?®+ab)
lim Ty,= lim exg —(n?m)?t(Dy—Di) =1.
{[n—(c—DI(a+b)}*(n—c)a+[n—(c—1)]b}?

n—o n—oe

It can be seen also that in the limit of- the elemen,;  matrix T from Eq. (21) tends to 1, so that thath order

of each matrix of the matrices that represent traps close tproduct of Eq.(21) results in 1. That is, according to our
the pointx=a+b is zero as for the matrices that representdiscussion so far, the density at the poirta-+ b at the right
traps close to the point=b/n [see Eq.(25)]. This time we  hand side of the trap system is the same as that at the left
obtain the vaJue of zero in the limit af— o without having hand side of this system at the popnt: b/n. We can show

to use the I'H@ital theorem as in the former case. That is, inthat we obtain the same result also whep © or t—o or
this limit of n—oc each of the matrices that represent trapsyhen both limits are satisfied. Figure 2 shows a three-
close to the poinx=a+b becomes the two-dimensional gimensional graph off;, in the limit of k—, that is, a
unity matrix. Now, taking into account that the product of graph of theT,; from Eq.(29) as a function oh anda. The

any number of two-dimensional unity matrices by a matrixrange ofn is 1=n=150. and that of is 1<a<200. The
values of the other parameters af®;=0.5, D;=0.1, and

of the form (27) results in a matrix of the same form as Eq.
t=2. It can be seen from the graph that the surfacd qf

(27), we can write the limit(for very largen) of Eqg. (21)
using Bqs(23—(27) as tends to unity for large and smalla, because in such a case
A2n+1) 1 0\(A; the large number of traps are densely arrayed along the small
( ) ( ) . (28 sectiona+b. It can also be seen that wharbegins to grow
Ban+1 0 0/1By the value ofT,; exceeds 1 even for large Whenn is small
the surface ofl 1; tends to the value of unity a&becomes
[Parge as can be seen from Fig. 2. As seen from(E§) we

. . h lue it h obtain the same situation if we replagdy t. That is, when
right hand side of the trap systeny at the same value it had t—oc we obtain a value of unity for th&,, of Eq. (29), and

at thg pointx=. b/n (the left ha_nd gide of the trap system with it a value of unity also for the infinite product from Eq.
That is, for this componertwhich is actually the only com- (21).
ponent of the densitysee the original problertl)]} the pres- We must note that whek— <, in such a case the imper-

ence of a very Iarge number of traps i.s the same as if NG traps become idepdee the third equations of the sty
even a single trap is present. As for the ideal trap Componennq(3)], the situation obtained is still different from the ideal
we see from Eq(28) that it vanishes at the poixt=a+b. 4355 component of the density function as given by the set

In all the numerical computations done so far we have) ang Eq.(5). This is because the ideal trap problem from
assigned to the coefficiektof the boundary value conditions yhe set(2) has an initial condition that is entirely different

of the. imperfect traps problem the value ofsee the third from the initial condition of the set3). Thus, as seen from
equations of the sefd) and(3)]. We can see frqm Eqs12) the set(2), we obtain a result of zero for the ideal trap com-
and(17) that wherk—c anda, b, n, andt have finite values  ,,hant of the density at the poirt=a-+ b, whereas we may
then the elemenT,; satisfies| T4/ <1. ThIS Is because_the obtain, as we see in Fig. 2, a result of unity for the ideal trap
elementT,, [see Eq(17)] of each matrixT from Eq.(21) is sy ation obtained from the imperfect probldsee the sets
composed of products and divisions by the expressiens (1) and(3)] in the limit of infinite k.

from Eq.(12). The second term af that involves the erfc is All the results obtained so far by the transfer matrix
zero, in the limit ofk—, by application of the I'Hpital  method may be obtained also by considering the equivalent
theorem. We remain in Eq17) with only products and di- 41 4n matrix method that deals with only one large matrix
visions of the erf functions as seen from the following equajnstead of then two-dimensional matrices that compose the
tion that is written for the first trap transfer matrix. Using this method we have, numerically
computed and plotted the ratidenoted by) of the imper-

lim =

n—o

From the last equation we conclude that the imperfect tra
component of the density remains at the poiarta+b (the

erf b erf atb fect trap function coefficient at the point=a+b (at the
_ 2n\D.t 2n\D;t right hand side of thea trap systemto that at the poink
lim Ty,= (29 =b/n (at the left hand side of this systéras a function of
ke erf b erf atb the total widtha of the n trap system. Figure 3 shows the
Zn\/D_it Zn\/D_et graphs ofV for different values of the timg as functions of

the total widtha of the n traps where we have assignednto
For finitea, b, n, andt eachT; from the last equation results the value ofn=50. The range of is 46<a<300, and the
in an outcome that is between 0 and 1, so thatrittreorder ~ seven curves shown are for the following values of the time:
product of thes& 14's in EqQ.(21) results in a small number if t=1,6,11,16,21,26,31. The correct chronological order of the
nis large. But we can see that wharandb become very curves shown in the figure is downward. That is, the upper
large (for finite n andt) then the erf function tends to unity curves in Fig. 2 are for the smalk, and the lower curves are
in this case[see EQ.(12)], and each elemerif;; of each for the large ones. Note that asgrows the corresponding
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FIG. 1. The surfacé,; as a function of the
number of traps and the total widtha.
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curves tend to give the value &=0.62. Whena becomes 0f the imperfect trap coefficient of the densihsidethe last
largeV tends to unity for all values dfas can be seen from rap to that at the left hand side of the trap system then we
Fig. 3. Figure 4 shows that whemgrowsV tends to unity ~ find similar results to those we found for the ratfoof the
also for all values of the number of trapsin Fig. 4 we see imperfect trap coefficient of the densityutsideand to the
nine graphs o as a function ofa for nine different values right of the last trap to this coefficient at the poib/n.

of n. The range of is 46<a<200, andn has the values of Measuring the ratios of the ideal trap coefficient outside the
2, 8, 14, 20, 26, 32, 38, 44, and S0has the value equal to traps or inside them to the imperfect trap coefficient at the
2, and the other parameteddg, D;, k has the same values as point x=b/n we find a very small result for ati and alla.

in Fig. 3. It is seen from Fig. 4 that all the curves tend to theThis is expected since this component of the density function
value of unity whena becomes large. The curves fit the is absorbed completely at the sides of the trapst=A0 we
different given values oh from above so that the upper find that the value o¥ is unity for all values ofn anda. We
curves correspond to the smaller valuesnpind the lower have obtained this result fdt=1, D,=0.5, D;=0.1, and
ones correspond to the larger values. For small values of b=a/2. That is, at the initial time the densities at the two
the graph ol begins from a value close to 1, andragrows  extreme sides of the trap system are equal. Wheaparts

the initial point of the corresponding curve tends to the valugrom zero this coefficient becomes smaller for the same val-
V=0.8 and continues from there to unity asgrows. The ues ofn anda. That is, as time progresses the density after
approach ofV to 1 is faster whem is small than whem is  then trap system becomes smaller than that before this sys-
large as can be seen from the figure. If we measure the ratiem as expected from a physical point of view. We note that

- a4
o > 0~
/ / /

Eq (29)
»
/

[N
w

L

FIG. 2. The surfac&,; as a function of the
number of traps and the total widtha.
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FIG. 3. The ratios/, as functions of the total

M/ width a for seven different values of the tinte

0.6

The ratio V for 7 different values of time t

05

0.4

J
50 100 150 200 250 300 X

the equality ofA,,,;=A, for very largea obtained from straint of a stric_tly constarit, suc_h th_at whera increased

Figs. 3 and 4 is not the same as the identical equéBgy must decrease in order_to remain Wlt_h a cons_tarthen we

obtained forb=0 [see the discussion after E2)]. The  Can express the total widtéhand total mtervab.m termg.of

reason is that a very large valueain Figs. 3 and 4 does not the total lengthL and another parameterthat is a positive

entails an existence of only one diffusion constant along thé€al number defined as=b/a. That is,a andb can be writ-

entire sectiora+b as we have obtained from E(2). Note ~ '€n as

that in these figures we have all the tilne a/2, so whera

becomes very largbk also does so, and we have still the two

diffusion constant®,. andD; along the sectioma+b. Thus, a= L _ i

it is entirely different from theD =D, case of E(22). 1+c 1+c’
We must note that in all the analytical and numerical dis-

cussion so far the finite length of the system, we denote it byrrom the last two relations we see thatamcreases de-

L=a+Db, is not kept constant as, for example, in Figs. 3 andcreases to the limit of zero, ardgrows to the limit ofL. In

4 that shows the ratiog’s as functions of, whereb=a/2, this case of a fixed total length the ratioV depends orc

so that whera increasesbh andL also do so. That is, as turns and n in such a manner that for small V exceeds unity

out from these figures the ratidss tend to 1 when the total already at small values af. As n increasesV tends to the

width a and the total length. grow. If we impose the con- unity for larger values ot as can be seen from Fig. 5 that

(30

Y
1.05

0.95
09

088 FIG. 4. The ratios/,, as functions of the total

width a for nine different values ohf.
0.8

0.75

The ratio V for 9 different values of n

0.7

0.65

0.6 1 1 1 J
50 100 150 200 X
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FIG. 5. The ratioVv,, for a fixed total length of
the system and for six different values rof

-
o

the ratios V for € different values of n

-
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1 2 3 4 5 6 7 8 9 10 X
shows the ratio/ as a function oft in the range ¥c=<10 Aonit Ay
for a total system length df =60, and for six different val- =[T(2™ ][ T(2™ H)]om-1. . .[T(29)]% 5. -
2n+1 1

ues ofn: 20,40,60,80,100,120. The upper curves fit the lower
values ofn and vice versa. That is, the uppermost curve (31)
corresponds tom=20. The second curve from above is for

n=40 and so on. Note that asgrowsV tends to begin from In summary, we see that the survival probability of the par-
the value ofV=0.83. If we compare Fig. 5 with Fig. 3, ticles represented by the imperfect trap component of the
which shows the ratio¥’s for the case in which the total density tends to unity as the number of traps becomes a very
lengthL is not fixedwe see that for this case the ratidgends  large number if14,15. This situation in which the diffusing

to the unity only when both the total width and the total particles .survive in spite of the very large r_1umber of traps
interval b increases(note that in Fig. 3b=a/2), whereas Surrounding them has been alluded 16], and it was argued
when the total length. is fixedthe ratioV tends to the unity ~there that if the particles survive all these traps then they
only when the total intervab increases and the total widgn ~ MuSt have performed anomalous diffusion. .

decreases. Thus, we see that the survival probability of the We_ note that we hgave found |r_1_the former_ section a result
particles represented by the imperfect trap density tends t8f unity for the survival probability of the imperfect trap

. . component of the density also for very small times in addi-
iL:::IPe/:slse,cs) for a fixed total length of the system wheandc tion to finding it for the case of very small widths of the traps

, , when their numben becomes very largeThis reminds us
We note that if the number of trapsis a power of 2, that ( y larg

o . of the Zeno effect that is conventionally believed to be a
is, n=2", then we can use a property of the transfer matrixy ,antum phenomendii 8], although one of the first authors

mentioned ir{12] in connection to the quantum systemmf [1q] that discuss this effect argued that it holds not only in
potential barriers. First, a pair of traps are combined in thgnhe quantum regime, but also in the classical and macro-
manner of Eqs(11)—(20) to produce a transfer matrix of scopic one, and that it may be the prime factor that stabilized
these two traps. Then the same construction is repeated rgrany physical phenomena. This Zeno effect is thought to be
garding the former transfer matrix as the new elementary time effec{18], that is, the large repetitions of some mea-
building block. Continuing in the same manner we obtain alsurement over a total finite time interval, where the time
the levelm the transfer matrix of 2 identical traps. For alloted for each separate measurement is correspondingly
instance, ifm=15 thenn=2'°=32768. That is, at the level very small, preserves the initial state of the system. It has
15 of the construction we build the transfer matrix of 32 768been argued20,21] that this preservation may also be ob-
identical traps. Whem is not a power of 2 we can use the tained through the space analog of this effect. That is, when
following binary representation of 2 the repetitions of this very large number of the same interac-
tion is performed over space and not over time such that each
interaction is confined in its specific space domain and when
n=cn2m+cm_12™ 1+ .. +¢,2°, the very large number of these small domains are contained
in a finite region of space. The result we have obtained in
this section in which the density is preserved in the limit, and
in order to write Eq.(21) as in spite of the large number of traps, may allude to a space

026108-9
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Zeno type effect that is responsible for the unit survival probdeft hand side of the first trap before these traps were tra-
ability we have obtained in this section. A similar result hasversed. That is, the density is preserved alongxlais in
been obtained for the classical concentric billiard for which aspite of the very large number of traps arrayed along the

Zeno type effect has been establish2d]. finite sectiona+b. It appears that this unit value for the
survival probability of the traversing particles may be a
IIl. CONCLUDING REMARKS manifestation of a space Zeno type effect. These results were

. , . corroborated numerically using the equivalem>4n ma-
_We have discussed the problem of a one-dimensiongfix from it we have obtained that when the total widtiand
diffusion-limited reaction in the presence of imperfect the total intervab of the n traps increases the survival prob-
traps. The physical entity we have tried to determine is theyyjjity of the passing particles tends to 1. The same result
densityp(x,t) of the identical particles that diffuse between 45 obtained also when the total length b of the dense

and through then traps. We have shown that the original gystem is kept fixed, and the total intenzghcreasesin this
problem may be decomposed into two secondary ones, ongse the total widtka decreasds

of which is the ideal trap problem, and the other is the im-

perfect trap problem. By using the continuities of the density

function and its first space derivatives at the I@oundaries ACKNOWLEDGMENTS

of then traps we have obtained a transfer matrix that enables

us to discuss the dense system analytically. We have shown | wish to thank L. P. Horwitz and H. Taitelbaum for dis-
that whenn becomes very large the density, after all the cussions on this subject, and for their review of the manu-
traps are passed through, remains the same as it was at theript.
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